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École normale supérieure

45 Rue d’Ulm, 75230 Paris Cedex 05, France
{Michel.Abdalla,Pierre-Alain.Fouque,David.Pointcheval}@ens.fr

http://www.di.ens.fr/~{mabdalla,fouque,pointche}
2 Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA
OChevassut@lbl.gov

http://www.dsd.lbl.gov/~chevassu

Abstract. This paper brings the password-based authenticated key exchange (PAKE) problem
closer to practice. It takes into account the presence of firewalls when clients communicate with
authentication servers. An authentication server can indeed be seen as two distinct entities, namely
a gateway (which is the direct interlocutor of the client) and a back-end server (which is the only
one able to check the identity of the client). The goal in this setting is to achieve both transparency
and security for the client. And to achieve these goals, the most appropriate choices seem to be
to keep the client’s password private —even from the back-end server— and to use threshold-
based cryptography. In this paper, we present the Threshold Password-based Authenticated Key
Exchange (GTPAKE) system: GTPAKE uses a pair of public/private keys and, unlike traditional
threshold-based constructions, shares only the private key among the servers. The system does no
require any certification —except during the registration and update of clients’ passwords— since
clients do not use the public-key to authenticate to the gateway. Clients only need to have their
password in hand. In addition to client security, this paper also presents highly-desirable security
properties such as server password protection against dishonest gateways and key privacy against
curious authentication servers.

Keywords. Threshold Protocols, Password-based Authentication.

1 Introduction

Problem Description. Consider the familiar scenario where you are at the airport waiting for
your flight. You have checked-in and have now half an hour to kill. What do you do? Turn on your
laptop, switch on your wireless card, and pick up the airport wireless LAN. You are prompted
for a password to authenticate yourself and upon successful authentication a port is opened
for you to browse the Internet and/or read your e-mails. Now you may wonder what happens
under the hood. We have indeed talked to an airport gateway, often termed hotspot, that has in
turn talked to your mobile-Internet provider. T-Mobile is an example of such a provider in the
United States. The gateway has passed —in an encrypted form— your password to the provider
for authentication and gets back a yes/no depending whether or not the authentication was
successful.

Although this model is very attractive in practice, existing security solutions implementing it
have major drawbacks since the gateway gains some amount of information about your password.
The ideal solution is a cryptographic algorithm allowing the client to securely exchange a session
key with the gateway, but the gateway does not gain any information about the password and the
authentication server does not gain any information about the session key. Additional problems
also occur if too many people, from the same provider, try to connect to various gateways at
the same time. The authentication check from the provider would become a bottleneck. Various
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authentication points are very desirable. Nevertheless, the password of the client cannot be
stored at several places, otherwise the job of hackers would be made much easier.

Scenario. To formally define a model for the above scenario, we propose a model in which
one can design a protocol among three parties (the client, the gateway and the authentication
server) which protects both the session keys and the passwords. We indeed require the three
following security notions which capture dishonest behaviors of the client, the authentication
server and the gateway respectively: the semantic security of the sessions keys, which we model
by a Real-Or-Random (ROR) game [1] (it has been proved strictly stronger than the more
classical Find-Then-Guess (FTG) model [3]); the key-privacy notion [1] which entails that the
session key exchanged by two parties with the help of an authentication server is unknown to
the authentication server (and also to any other party, granted the semantic security); the server
password protection which basically means that the gateway cannot learn any information about
clients’ passwords from the authentication server.

The ultimate goal of this paper is to achieve the highest level of security in the PAKE

setting. With the above security notions, breaking into the gateway would not help to gain
any information about the passwords, however the authentication server is a security hole.
Breaking into the latter would leak the authentication information. Furthermore, according to
the above motivation example, a unique authentication point may be a bottleneck. When data
information is crucial, a usual solution to protect it is to distribute it among several servers
such that a majority of them is needed to recover the initial data. Moreover, when we want
to protect a cryptographic service we can split the private information into several parts, each
known by one server, so that a majority of them is required to maintain the service without
reconstructing the secret key in a single place. Threshold cryptography is the field that provides
such solutions and allows to take into account adversaries that can break into any minority of
parties. It furthermore solves the bottleneck problem.

Contribution. Our contribution in this paper is a provably-secure protocol satisfying the
previously mentioned requirements. We have constructed it by defining a simple protocol, called
the gateway PAKE (GPAKE) protocol, among three parties (the client, the gateway and the
authentication server). GPAKE protects the session keys and the passwords according to a formal
security model which we specify in this paper. It provides the additional property to be a variant
of AuthA [4] perfectly transparent to the client. Transparency means that a client does not (need
to) know whether he is talking to a server directly or whether the server is implemented as a
gateway, an authentication server, or even an application server. The gateway does not also (need
to) know whether the authentication server is distributed. A non-transparent protocol indeed
raises real concerns on the utilization of the protocol in practice since clients need to first update
their cryptographic stack in order to take advantage of the threshold PAKE feature. A transparent
protocol on the other hand lets only domain administrators worry about deploying the threshold
PAKE feature to their users. We have developed a threshold version (called gateway threshold
PAKE (GTPAKE)) that does not break the transparency property of GPAKE, and defined its
execution in our security model. Clients already running the two-party AuthA protocol (e.g,
OMDHKE [7]) will not have to upgrade their stack when administrators add an extra layer of
protection with GTPAKE!

Related Work. Several password-based key exchange protocols in the threshold setting have
been proposed in the past by MacKenzie et al. [13] and by Di Raimondo and Gennaro [9], to
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name a few. In particular, the protocol by Di Raimondo and Gennaro in Eurocrypt 2003 [9],
which is a threshold version of the 2-party KOY protocol [11], is proven secure in the standard
model. In that paper, they have introduced the notion of transparent protocols, where the initial
protocol and its threshold version are the same from the point of view of the client. Unfortu-
nately, their solution is not very efficient from a practical point of view since it requires several
rounds of communication between the client and the server and among the servers themselves.
Moreover, like previous proposals of threshold password-based key exchange protocols, their
protocol requires the password to be shared among all the servers.

The solution we propose in this paper does not require passwords to be shared across different
servers. Instead, we only share the secret decryption key for a public-key encryption scheme
under which all passwords are encrypted. This provides an additional feature: it is quite easy
for a client to modify his password. He just needs to send the new one encrypted under the
authentication servers’ public key.

Moreover, contrary to the hybrid model of Halevi and Krawczyk [10], where the server has a
public/secret key pair and the client only knows a password, the client is not required to check
the authenticity of the public key during the execution of the protocol. Integrity is required only
during the registration or when the user wants to update his password.

Organization of the Paper. In Section 2, we present the formalization used to define the
execution of the GPAKE and GTPAKE protocols. Our formalization extends that of Abdalla et
al. to the threshold setting [1]. In Section 3, we present the intractability assumptions used
throughout the paper. In Section 4, we describe the GPAKE system and show that it achieves
semantic security and key privacy in a provable secure way. In Section 5, we describe the
GPAKE system’s threshold version and show that it is secure —via a reduction from the security
of GTPAKE to the intractability assumptions— against dictionary attacks.

2 Security Model

In this section, we present the security model we will use in the rest of the paper to define the
execution of our protocol for threshold password-authenticated key exchange.

2.1 Overview

Gateway-oriented password-based key exchange. A gateway-oriented password-based
key exchange is a three-party protocol among a client, a gateway, and an authentication server.
The goal of protocol is to establish an implicitly authenticated session key between the client
and the gateway with the help of the authentication server, where the authentication is done
by means of a short password. In our model, the password is known to both the client and the
authentication server, but not to the gateway. In fact, no long-term secrets are stored in the
gateway. The authentication server, on the other hand, is assumed to know the password. While
the communication channel between the gateway and the authentication server is assumed to
be authenticated and private, the channel connecting the client to the gateway may be insecure
and perhaps under the control of an adversary.

The security goals of our gateway-oriented password-based key exchange model are also
somewhat different from those of previous models for password-based schemes. In particular, we
ask that the session key shared between the gateway and the client should remain private to the
authentication server (see Section 2.2 for more details). Moreover, we also ask that the chances
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of the gateway learning some information on the password after multiple interactions with the
server, perhaps concurrently, should be negligible.

Protocol participants. The participants in a gateway-oriented password-based key exchange
are the client C ∈ C, the gateway G ∈ G, and the authentication server S ∈ S. We denote by U
the set of all participants (i.e., U = C∪G∪S) and by U a non-specific participant in U . Each client
C ∈ C holds a password pwC . Each server S ∈ S holds a vector of passwords PWS = 〈pwC〉C∈C

with an entry for each client.

2.2 Security Model

Since we assume an authenticated and private channel between the gateway and the server,
the communication model is similar to previous one for 2-party authenticated key exchange.
In particular, we adopt the Real-Or-Random (ROR) security model of Abdalla et al. [1] for
password-based authenticated key exchange protocol, which in turn implies that of Bellare et
al. [3]. As in the standard model, all the interactions between an adversary A and the protocol
participants in the ROR model are done via oracle queries. Let U i denote the instance i of a
participant U . The list of oracles available to the adversary are as follows:

– Execute(Ci, Gj): This query models passive attacks in which the attacker eavesdrops on
honest executions among a client instance Ci and a gateway instance Gk. The output of
this query consists of the messages that were exchanged during the honest execution of the
protocol.

– Send(U i, m): This query models an active attack against the client or gateway instance U i,
in which the adversary may intercept a message and then modify it, create a new one, or
simply forward it to the intended recipient. The output of this query is the message that
the participant instance U i would generate upon receipt of message m.

The Real-Or-Random Model [1]. In the ROR model, in addition to the above-mentioned
oracles, an attacker is also given access to a less restrictive Test oracle. Let b be a bit chosen
uniformly at random at the beginning of the experiment defining the semantic security of session
keys. The Test oracle in the ROR model is defined as follows:

– Test(U i): If no session key for instance U i is defined, then return the undefined symbol ⊥.
Otherwise, return the session key for instance U i if b = 1 or a random of key of the same
size if b = 0.

As in standard models, the Test oracle in the ROR model also tries to capture the adversary’s
ability (or inability) to tell apart a real session key from a random one. The main difference is
that it does so not only for a single session but for all sessions. More precisely, the adversary
in the ROR model is not restricted to ask a single Test query, but it can in fact ask multiple
ones. All Test queries in this case will be answered using the same value for the hidden bit b
that was chosen at the beginning of the experiment defining the semantic security of the session
keys. That is, the keys returned by the Test oracle are either all real or all random. However,
in the random case, the same random key value is returned for Test queries that are asked to
two instances that belong to the same session (see notion of partnering below). The goal of the
adversary in the ROR model is still the same: to guess the value of the hidden bit b used to
answer Test queries. The adversary is considered successful if it guesses b correctly.

Partnering. As in [1], we use the notion of partnering based on session identifications (sid),
which says that two instances are partnered if they hold the same non-null sid. More specifically,
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a client instance Ci and a gateway instance Gj are said to be partners if the following conditions
are met: (1) Both Ci and Gj accept; (2) Both Ci and Gj share the same session identifications;
(3) The partner identification for Ci is Gj and vice-versa; and (4) No instance other than Ci

and Gj accepts with a partner identification equal to Ci or Gj . In practice, the sid is taken to
be the partial transcript of the conversation among the client and the gateway instances before
the acceptance.

Freshness. Differently from [1], we opt not to embed the notion of freshness inside the definition
of the oracles. Instead, we take the more standard approach of explicitly defining the notion
of freshness and mandating the adversary to only perform tests on fresh instances. The two
approaches are however equivalent. In particular, we say that a instance of a client or gateway
is fresh if it has accepted.

Formal definition. Let Succ denote the event in which the adversary is successful. The
ake− ror-advantage of an adversary A in violating the semantic security of the protocol P in
the ROR sense and the advantage function of the protocol P , when passwords are drawn from
a dictionary Dict, are respectively

Advake−ror

P,Dict
(A) = 2 · Pr[Succ ]− 1 and

Advake−ror

P,Dict
(t, R) = max

A
{Advake−ror

P,Dict
(A) },

where the maximum is over all A with time-complexity at most t and using resources at most
R (such as the number of queries to its oracles). The definition of time-complexity that we
use henceforth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size.

Please note that, as proven in [1], any scheme proven secure in the ROR model is also secure
in the model of Bellare et al. [3]. The converse, however, is not necessarily true (see [1] for more
details).

Authentication. The notion of semantic security does not guarantee the existence of a partner,
but only the secrecy of the session key (implicit authentication). In order to address this problem,
one usually adds mechanisms for explicit authentication of client and gateway instances. In this
paper, we only consider unilateral authentication of the gateway, by which a client instance
can be ensured that it has in fact established a key with the gateway instance it intended to.
As in [6], we denote by SuccG−auth

A the probability that adversary A successfully impersonates
the gateway in an execution of the protocol. This is the probability with which a client instance
accepts without having a gateway partner. The advantage function of the protocol can be defined
as in previous cases.

Key Privacy. The notion of key privacy was introduced in [1] to capture the idea that the
session key computed by two parties with the aid of an authentication server should only be
known to those two parties and not to the server. The goal in this case is to reduce the amount
of trust one puts into the server. In order to meet this goal, one has to consider an adversary
with access to all the secret information stored in the server and then show that such adversary
cannot distinguish actual session keys from random ones if we restrict this adversary to test
sessions in which the keys are shared between two oracles. The latter restriction is important
since an adversary with access to the secrets of the authentication server could always establish
a key with a client by playing the roles of the gateway and authentication server. Since one of
our main goals is to show that the key shared between the client and the gateway is not known
to the authentication server, we also use the notion of key privacy.
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To capture the above intuition more formally, [1] considers an adversary which has access
to all the secrets held by the authentication server and to the oracles used in the experiment
defining semantic security. They then introduce a new type of oracle, called TestPair, whose goal
is to capture the adversary’s ability to distinguish the real session key shared between any two
oracle instances from a random one. The inputs to the TestPair oracle are the specific oracle
instances whose shared session key the adversary thinks it can tell apart from a random key.

Formal definition. Consider an execution of the key exchange protocol P by an adversary A
with access to all the secret held by the authentication server as well as to the Execute, Send, and
TestPair oracles. Let Succ denote the event in which the adversary is successful in guessing the
hidden bit used by TestPair oracle when only asking TestPair queries to instances pairs that have
accepted. The kp-advantage of an adversary A in violating the key privacy of the protocol P
in the ROR sense (Advake−kp

P,Dict
(A)) and the advantage function of P (Advake−kp

P,Dict
(t, R)), when

passwords are drawn from a dictionary Dict, are then defined as in previous definitions.

Server Password Protection. As we mentioned earlier, one of the goals of our protocol is
to guarantee that the gateway is not capable of learning the user’s password that is stored in
the server. Clearly, as in the case of semantic security, one cannot hope for much since, in each
interaction, the adversary may be able to eliminate one candidate password from the list of
possible passwords. However, we ask that the adversary should not be able to do much better
than. That is, if the adversary interacts q times with the server, then the probability that it can
distinguish the true password from a random one in the dictionary should be only negligibly
larger than O(q/N), where N is the size of the dictionary. The hidden constant in this case
should be as small as possible (preferably 1). Note that, in this definition, the dictionary is
assumed to be uniformly distributed.

2.3 Threshold Security Model

Threshold gateway-oriented password-based key exchange. A (t, k, n)-threshold gate-
way-oriented password-based key exchange is an extension of the basic gateway-oriented pass-
word-based key exchange in which the authentication server is a distributed entity. More specifi-
cally, the clients’ passwords are no longer known to any single server. Instead, each server in the
set of n authentication servers is assumed to hold a share of the secret key of a public-key en-
cryption scheme, under which clients’ passwords are encrypted. The authentication of any client
will require the cooperation of some size-k subset of honest servers. In addition, any adversary
who learns t or fewer shares of the secret key should not learn any information about the clients’
passwords.

Participants. The participants in a threshold protocol are the client C ∈ C, the gateway G ∈ G,
the set of authentication servers {S1, . . . , Sn} with Si ∈ S, and a trusted dealer.

Semantic Security. The definition of semantic security of threshold protocols follows the one
given above for gateway-oriented protocols. At the beginning of the semantic security exper-
iment, the adversary selects a subset of at most t = k − 1 servers to corrupt. We say that
the adversary is static when it chooses the set of servers to corrupt in advance, before seeing
anything. A special server, called the combiner, will be used to perform some tasks that do not
require any secret. The combiner is also in charge of all communications between the gateway
and the other servers.
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The dealer generates a public key pk and a secret key sk for an encryption scheme. Then, he
performs the secret sharing of sk and sends the part ski to Pi along with a verification key vki.
The adversary obtains the secret key shares of the corrupted servers, along with the public key
and the verification keys.

After this phase, the adversary is given access to the same set of oracles used in the standard
security model for gateway-oriented password-based authenticated key exchange protocols.

Robustness. We say that a threshold scheme is robust when it takes into account malicious
adversaries whose behavior can be different from the protocol. To force the servers to correctly
perform their job, we use proofs of validity in our protocol. This also enables the combiner to
correctly decrypt.

3 Diffie-Hellman Assumptions

In this section, we recall the definitions of standard Diffie-Hellman assumptions and introduce
some new variants, which we use in the security proof of our protocol. We also present some
relations between these assumptions.

3.1 Classical Assumptions

Henceforth, we assume a finite cyclic group G of prime order p generated by an element g. We
also call the tuple G = (G, g, p) a represented group.

Computational Diffie-Hellman Assumption: CDH. The CDH assumption, in a repre-
sented group G, with respect to the basis X, states that given two elements X ′ = Xu and
Y = Xv, where u and v were drawn at random from Zp, it is hard to compute Y ′ = Y u = Xuv.
This can be defined more precisely by considering an experiment Expcdh

G
(A, X), in which we

select an exponent u in Zp, an element Y in G, compute X ′ = Xu, and then give both X ′ and Y
to A. Let Y ′ be the output of A. Then, the experiment Expcdh

G
(A, X) outputs 1 if Y ′ = Y u and

0 otherwise. We define the advantage of A in violating the CDH assumption with respect to X
as Advcdh

G (A, X) = Pr[Expcdh
G

(A, X) = 1 ], the advantage of A in violating the CDH assump-
tion (with a random basis) as Advcdh

G (A) = EX

[

Advcdh
G (A, X)

]

, and the advantage functions,

Advcdh
G (t, X) and Advcdh

G (t), as the maximum values of Advcdh
G (A, X) and Advcdh

G (A) over all
A with time-complexity at most t.

It is also often assumed that, independently of what the value of X is (as long as it is a
generator, of order p), the CDH problem with respect to the basis X is hard: the maximal value
of Advcdh

G (t, X) over all generators X is small for any reasonable t.

Decisional Diffie-Hellman Assumption: DDH. Roughly, the DDH assumption, with re-
spect to the basis X, states that the distributions (X, X ′ = Xu, Y, Y ′ = Y u) and (X, X ′ = Xu, Y,
Z = Y v) are computationally indistinguishable when Y is drawn at random from G, and u and
v are drawn at random from Zp. As before, we can define the DDH assumption more formally by
defining two experiments, Expddh-real

G
(A, X) and Expddh-rand

G
(A, X). In both experiments, we

compute two random values X ′ = Xu and Y as before. But in addition to that, we also provide a
third input, which is Y u in Expddh-real

G
(A, X) and Y v, for a random v, in Expddh-rand

G
(A, X). The

goal of the adversary is to guess a bit indicating the experiment he thinks he is in. We define the
advantage of A in violating the DDH assumption, with respect to the basis X, Advddh

G (A, X), as
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Pr[Expddh-real
G

(A, X) = 1 ] − Pr[Expddh-rand
G

(A, X) = 1 ], and advantage of A in violating the
DDH assumption (with random basis) as Advddh

G (A) = EX

[

Advddh
G (A, X)

]

. The advantage

functions Advddh
G (t, X) and Advddh

G (t) are then defined in a similar manner as above.

Again, it is also often assumed that, independently of what X is (as long as it is a genera-
tor, of order p), the DDH problem with respect to the basis X is hard: the maximal value of
Advddh

G (t, X) over all generators X is small for any reasonable t.

3.2 Password-Based Chosen-Basis Diffie-Hellman Assumptions

The actual proofs of security of our protocol use password-related versions of the above Diffie-
Hellman assumptions, in which the adversary has some control over the basis, hence the name
password-based chosen-basis decisional/computational Diffie-Hellman assumptions. They make
use of a dictionary D = {U1, . . . , UN} of size N . Then, we assume that when the adversary has
not correctly predicted the password (1 chance over N), he has no significant advantage. Hence,
its overall advantage cannot be significantly larger than 1/N .

We start by presenting the password-based chosen-basis computational Diffie-Hellman as-
sumption.

Definition 1 (PCCDH). Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where D is a dictionary of N elements in G.

Experiment Exppccdh
G

(A,D)

(X, s)← A(find,D)

Π
R
← D ; Y

R
← G

K ← A(guess, s, Y, Π)
return 1 if K = CDH(X/Π, Y )

We define the advantage of A in violating the PCCDH assumption with respect to the dic-
tionary D, Advpccdh

G,N (A,D), the advantage of A Advpccdh
G,N (A), and the advantage functions,

Advpccdh
G,N (t,D) and Advpccdh

G,N (t), as above. ♦

In our security proofs, we actually need a simple variation of the above problem, in which the
adversary, in the second stage, outputs a set of s candidates for the CDH value. The adversary
wins if the set indeed contains K. This problem is thus named Set Password-based Chosen-basis
Computational Diffie-Hellman Problem (SPCCDH).

We define the advantage Advspccdh
G,N (A,D, s) of A in violating the SPCCDH assumption with

respect to the dictionary D, the advantage Advspccdh
G,N (A, s) of A, and the advantage functions

Advspccdh
G,N (t,D, s) and Advspccdh

G,N (t, s) as in previous definitions.

Fortunately, the two new assumptions are not so strong, since one can prove that the
SPCCDH problem is equivalent to the CDH problem as proven in Appendix C. The general
result proven in Appendix C can be simplified in the particular case of not so large dictionaries:

Lemma 2. Advspccdh
G,N (t, s) ≤ 1

N + N2s2 ×Advcdh
G (2t + τe).

In addition to the computational assumptions above, we also make use of the following
decisional assumption in our security proofs.

Definition 3 (PCDDH). Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, defined for b = 0, 1, where D is the dictionary of N elements
in G.
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Experiment Exppcddh
b (A,D)

(X, Y, s)← A(find,D)

Π
R
← D ; s0, s1

R
← Zp

Y ′ ← Y s0 ; X ′ ← (X/Π)sb

b′ ← A(guess, s, X ′, Y ′, Π)
return b′

We define the advantage of A in violating the PCDDH assumption with respect to the dictionary
D, Advpcddh

G,N (A,D), the advantage of A, Advpcddh
G,N (A), and the respective advantage functions

of G for a given value N , Advpcddh
G,N (t,D) and Advpcddh

G,N (t), as above. ♦

Fortunately again, this problem is not new. It has already appeared in [2] under the name

PCDDH2. In that paper, the authors have also shown that Advpcddh
G,N (t,D) and Advpcddh

G,N (t)
cannot be significantly larger than 2/N .

4 The Gateway PAKE System

In this section, we describe GPAKE, the underlying gateway-oriented password-based protocol
used in the construction of our threshold gateway-oriented password-based protocol.

4.1 Description

Our gateway-oriented password-based protocol, GPAKE, builds upon previous password-based
key exchange protocols in [4, 7, 12], which in turn are based on the encrypted key exchange of
Bellovin and Merritt [5]. Its description is given in Figure 1, where G = (G, g, q) is a represented
group; ℓ is a security parameter; and G : U2 × Dict→G, Hash1 : U2 × G × G→{0, 1}ℓ, and
Hash2 : U2 ×G×G→{0, 1}ℓ, are random oracles.

Client C Gateway G Authentication Server S

G, Hash1, Hash2 G, Hash1, Hash2 G, Hash1, Hash2
pw ∈ Dict pw ∈ Dict

PW = G(C, G, pw) ∈ G PW = G(C, G, pw) ∈ G

unauthenticated
channel

authenticated
private
channel

accept← false accept← false

x
R
← Zq, X ← gx

X⋆
← X × PW

C, X
⋆

−−−−−−−−→

y
R
← Zq, Y ← gy C, X

⋆
, Y

−−−−−−−−→

s
R
← Zq

X ← X⋆/PW

X, Y
←−−−−−−−− X ← Xs, Y ← Y s

K ← X
y

AuthG← Hash2(C, G, X⋆, Y , K)

G, Y , AuthG
←−−−−−−−−

K ← Y
x

AuthG′
← Hash2(C, G, X⋆, Y , K)

AuthG′ = AuthG?

SK← Hash1(C, G, X⋆, Y , K) SK← Hash1(C, G, X⋆, Y , K)
accept← true accept← true

Fig. 1. GPAKE: A gateway-oriented password-based authenticated key exchange protocol.
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The protocol consists of four message exchanges, two between the client and the gateway
and two between the gateway and the authentication server. Since the channel connecting the
gateway to the server is assumed to be authenticated and private, from the client perspective,
the protocol resembles almost exactly the 2-party protocol OMDHKE in [7]. The only difference
is in the key derivation function, which does not include the password.

The protocol starts with the client choosing a random element x ∈ Zp and computing X = gx,
and encrypting it using G(C, G, pw) as a mask to obtain X⋆. The client then sends to the gateway
both X⋆ and its identity string C. Upon receiving a message from the client, the gateway chooses
a random element y ∈ Zp and computes Y = gy, and forwards to the server both Y and the
value X⋆ that it has received from the client. Upon receiving the values (X⋆, Y ) from the
gateway, the server computes X = X⋆/G(C, G, pw), chooses a random element s ∈ Zp, computes
(X = Xs, Y = Y s), and sends it back to the gateway. Upon receiving (X, Y ), the gateway
computes the Diffie-Hellman key K = X

y
, the authenticator AuthG = Hash2(C, G, X⋆, Y , K)

and the session key SK = Hash1(C, G, X⋆, Y , K), and sends (G, Y ,AuthG) to the client. Upon
receiving (G, Y ,AuthG), the client computes the Diffie-Hellman key K = Y

x
, checks whether

AuthG = Hash2(C, G, X⋆, Y , K), and sets the session key to SK = Hash1(C, G, X⋆, Y , K) if
the test passes. The session identification is defined to be the transcript (C, G, X⋆, Y ) of the
conversation between the client and the gateway.

4.2 Security

Semantic security. As the following theorem states, GPAKE is a secure gateway-oriented
password-based key exchange protocol as long as the SPCCDH problem is hard in G. As shown
in Section 3, this is equivalent to assuming that CDH problem is hard in G. The proof can be
found in Appendix B. Nevertheless, we note here that the proof of security assumes Dict to be
a uniformly distributed dictionary and of size smaller than 2ℓ.

Theorem 4. Let G = (G, g, q) be a represent group of prime order q and let Dict be a uniformly
distributed dictionary of size N = |Dict|. Let GPAKE describe the gateway-oriented protocol
associated with these primitives as defined in Figure 1. Then,

Advake−ror

GPAKE,G,Dict
(t, qexe, qfake−C, qfake−G, qactive, qtest, qHash1 , qHash2 , qG) ≤

q2
active + q2

G

q
+

q2
exe

q2
+ 2

q2
Hash1

+ q2
Hash2

2ℓ
+

2 (qHash1 + qHash2) ·Advcdh
G (t + (4qexe + 4)τe) +

2 · qactive · (qHash1 + qHash2) ·Advcdh
G (t + 2τe) + 4 · qfake−C/N +

2 · qfake−G ·Advspccdh
G,N (t, qHash1 + qHash2) ,

where qG, qHash1, and qHash2 represent the number of queries to the G, Hash1 and Hash2 oracles,
respectively; qexe represents the number of queries to the Execute oracle; qfake−C and qfake−G

represent the number of attempts of the adversary to fake the client and the gateway, respectively;
qactive represents the total number of queries to the Send oracle; qtest represents the total number
of queries to the Test oracle; and τe denotes the exponentiation computational time in G.

Remark 5. In the security model presented in Section 2, the adversary is not allowed to corrupt
gateway instances. Consequently, the proof of Theorem 4 does not guarantee the security of
GPAKE in that scenario. Even though GPAKE appears to be secure in the presence of such
adversaries, a new proof of security would be required in this case.
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Key Privacy. As the following shows, GPAKE achieves the goal of key privacy as long as the
DDH problem is hard in G.

Theorem 6. Let G = (G, g, q) be a represent group of prime order q and let Dict be a uniformly
distributed dictionary of size N = |Dict|. Let GPAKE describe the gateway-oriented protocol
associated with these primitives as defined in Figure 1. Then,

Advake−kp

GPAKE,G,Dict
(t, qexe, qtest) ≤ 2 ·Advddh

G (t + (4qexe + 4)τe) ,

where qexe and qtest represent the total number of queries to the Execute and TestPair oracles;
and τe denotes the exponentiation computational time in G.

The proof of Theorem 6 is in Appendix B. It is worth mentioning that, when proving the security
of GPAKE, we do not give the server access to a Send oracle since we assume the server to be
honest but curious. We do so because, in the actual implementation of GPAKE, the server is
distributed and we assume the majority of them to be honest (see Section 5). We also note that,
in order to prove key privacy in scenarios where the majority of servers is corrupted, additional
modifications would need to be made to GPAKE. These modifications would include the addition
of an authenticated Diffie-Hellman protocol between C and G as done in [1] and a proof that
the pair (X, Y ) is well formed.

Server Password Protection. The server password protection of GPAKE follows directly from
the password-based chosen-basis decisional Diffie-Hellman assumption (PCDDH) introduced in
[2] and recalled in Section 3. More specifically, it is easy to see that the interaction between the
gateway and the server corresponds exactly to the security experiment for PCDDH. Since the
security of the latter was shown in [2] to be only negligibly larger than 2/N , where N is the size
of the dictionary, it follows (via a standard hybrid argument as in [2]) that, in each interaction
with the server, an adversarial gateway cannot do much better than eliminating two passwords
from the list of possible candidates with each interaction. As a result, after q interactions with
the server, the advantage of a malicious gateway would be only negligibly larger than 2q/N .

5 The Gateway Threshold PAKE System

In this section, our goal is to distribute the authentication server in the previous gateway-
oriented password-based protocol to prevent malicious adversaries that can corrupt up to k out
of n servers. The solution is robust against static adversaries. The threshold version is transparent
from the point of view of the client since it communicates only with the gateway. The threshold
version is also transparent from the point of view of the gateway since a special authentication
server, called the combiner, is the only server with which the gateway communicates. We also
assume that the channel between the gateway and the combiner is authenticated and private.
We can use signature and encryption schemes in order to fulfill this requirement using threshold
signature and encryption.

Description. Let G is a cyclic subgroup of prime order q. We assume that the authentication
servers {S1, . . . , Sn} share a secret ElGamal encryption key sk = x using Shamir scheme with
threshold k. Server i knows ski = xi and has a verification key vki = vxi , where v is a generator of
G. The encryption of the password c = Epk(PW) = (ec, fc) under the public ElGamal encryption
key pk = (g, y) is authenticated in a public file. At the beginning of the protocol, the combiner,
S1 wlog, receives X⋆ = X × PW, and Y = gy.
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First Stage The combiner encrypts X⋆ into (e, f) and proves the validity of the encryption
using a zero-knowledge proof of equality of discrete-log EDLogy,g(e/X⋆, f). Given X⋆ and
(e, f), where e = X⋆ × yr and f = gr, then we have to show that logy(e/X⋆) = logg(f).
Then, he broadcasts to all servers Y, X⋆, (e, f) and the proof of validity EDLogy,g(e/X⋆, f).

Second Stage Each authentication server Si checks the proofs and chooses a random value
si ∈ Zq. Then, he computes Yi = Y si , e′i = (e/ec)

si and f ′
i = (f/fc)

si along with a proof
of validity that Yi and the two parts of (e′i, f

′
i) have been raised to the same power si:

EDLogY,e/ec
(Yi, e

′
i) and EDLogY,f/fc

(Yi, f
′
i). All these values are broadcast to all the servers.

Third Stage They check all proofs and they compute the values e′s =
∏

i e
′
i = e′

P

i si , f ′s =
∏

i f
′
i = f ′

P

i si , and Y s =
∏

i Ỹi. Then, they perform a threshold decryption of (e′s, f ′s)
by computing gs

i = (f ′s)xi . Next, they prove the validity of the decryption by computing
EDLogf ′s,v(g

s
i , vki). Finally, they broadcast the proof along with their decryption share gs

i .

Forth Stage The combiner, without any secret, can compute f ′xs =
∏

i∈S g
sλS

0,i

i by using La-
grange interpolation formula and X = Xs = e′s/f ′xs using k valid decryption shares. He
sends to the gateway X and Y = Y s using the authentication and private channel.

Gateway G Authentication Servers Si

G, Hash1, Hash2 G, Hash1, Hash2
pw ∈ Dict

PW = G(C, G, pw) ∈ G

g, v generators of G, pk = y = gx, sk = x ∈ Zq
ski = xi ∈ Zq, vk = vxi

E ElGamal encryption scheme

c = Epk(PW) = (ec, fc), ec = PW × yk, fc = gk

unauthenticated
channel

authenticated
private
channel

accept← false

A, X
⋆

−−−−−−−−→

y
R
← Zq, Y ← gy A, X

⋆
, Y

−−−−−−−−→

∗S1 computes and broadcasts
Y, X⋆, (e, f) = Epk(X

⋆), EDLogy,g(e/X⋆, f)

∗Si checks the proof and computes

si
R
← Zq, Yi ← Y si

and e′i ← (e/ec)si , f ′

i ← (f/fc)si ,
and EDLogY,e/ec

(Yi, e′i), EDLogY,f/fc
(Yi, f ′

i)

where (e′, f ′) = Epk(X)

and broadcasts the proofs and Yi, e′i, f ′

i
∗Si checks the proofs and computes
e′s ←

Q

i e′i, f ′s
←

Q

i f ′

i
and Y ← Y s, gs

i ← f ′sxi , EDLogf′s,v(gs
i , vki)

where s =
P

i si if proofs of Si are correct
and broadcasts the proof and gs

i
∗S1 checks the proofs and decrypts

X ← e′s/f ′xs where f ′xs
←

Q

i∈S g
sλS

0,i
i

X, Y
←−−−−−−−− X = Xs, Y = Y s

K ← X
y

AuthG← Hash2(A, G, X⋆, Y , K)

G, Y , AuthG
←−−−−−−−−

SK← Hash1(A, G, X⋆, Y , K)
accept← true

Fig. 2. Threshold version of the gateway-oriented password-based authenticated key exchange protocol. Since no
change is required on the client side with respect to the non-threshold protocol in Figure 1, the client side has
been omitted in the diagram.

For a pictorial description of our threshold protocol, please refer to Figure 2.
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Security. We now analyze the security of the threshold variant we just presented. To this end,
we show a reduction between an adversary A against the threshold scheme and an attacker B
against the underlying provably-secure GPAKE protocol described in the previous section.

Theorem 7. If the underlying GPAKE protocol is semantically secure and the DDH assumption
holds in G, then GTPAKE is a semantically secure threshold protocol against a static adversary.

Proof. Our goal is to reduce an adversary A against the GTPAKE protocol to an attacker B
against the GPAKE protocol. We need to simulate the threshold environment for A that can
corrupt any subset of size at most k − 1 servers from the environment of the attacker B. We
essentially need to simulate the communications among the servers, i.e. the decryption parts at
the end of the protocol and the proofs of validity.

Let i1, . . . , ik−1 be the set of corrupted servers. Recall xi = F (i) mod q for all 1 ≤ i ≤ n, and
x = F (0) mod q.

To simulate the adversary’s view, we simply choose the xij belonging to the set of corrupted
servers at random from the set Zq. This allows us to simulate all the messages, proofs of validity
and decryption shares coming from the corrupted servers.

Once these values are chosen, the values xi for the uncorrupted servers are also completely
determined modulo q, since we have k points (the k − 1 points of the corrupted servers and
the point 0). The value at point 0 is the decryption value f ′sx. However, they cannot be easily
computed since F (0) is secret and corresponds to the secret key of the ElGamal scheme. The
ElGamal secret key cannot be chosen by the attacker B. Indeed, as all the passwords are en-
crypted using the ElGamal public key in a public file, B cannot know it, unless he recovers the
passwords and can easily break the semantic security of the GPAKE scheme. However, we can
easily compute the decryption parts gs

i = f ′sxi of the uncorrupted server by using the value f ′xs:

gs
i = f ′sxλS

i,0 ×
∏

j∈S\{0}

g
sλS

i,j

j

where S = {0, i1, . . . , ik−1}.
For the “proofs of validity”, one can invoke the random oracle model for the hash function H

to get soundness and perfect zero-knowledge. The soundness is similar to that in Appendix A.
Moreover, the interactive proof system is zero-knowledge against an honest verifier since the

adversary’s view can be simulated without knowing the values xi. This view includes the values of
the random oracle at those points where the adversary has queried the oracle, so the simulator is
in complete charge of the random oracle. Whenever, the adversary makes a query to the random
oracle, if the oracle has not been previously defined at the given point, the simulator defines it
to be a random value, and returns the value to the adversary. When we have to perform a fake
proof for (ui, ūi), since the simulator does not know xi, he chooses at random c ∈ Zq and z ∈ Zq

and defines the values of the random oracle at (p, q, g, ḡ, ui, ūi, g
z/uc

i , ḡ
z/ūi

c) to be c. With all
but negligible probability, the simulator has not defined the random oracle at this point before,
and so it is free to do so. It is easy to verify that the distribution produced by this simulator is
perfect.

Finally, as we need the semantic security of ElGamal encryption scheme, the security is based
on the DDH assumption. ⊓⊔
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A Basic Tools

A.1 Threshold Secret Sharing

Let q be a prime and 1 ≤ k ≤ n < q. Shamir secret sharing over Zq is a k-out-of n sharing
where any subset of at least k parties can recover the secret, but any subset of strictly less
than k parties cannot gain any information about the secret. It is defined as follows: the dealer
knows a secret x ∈ Zq, chooses k − 1 random points f1, . . . , fk−1 ∈ Zq, sets f0 = x and define

the polynomial F (X) =
∑k−1

j=0 fjX
j . For 1 ≤ i ≤ n, let xi = F (i) ∈ Zq be the i-th share of x.

Thanks to the Lagrange equality, we can show that if k shares are revealed, x is completely and
can be determined by interpolation. For S ⊂ Zq of cardinality k, any i ∈ Zq and any j ∈ S,
there exists an element λS

i,j =
∏

j′∈S\{j}(i− j′)/
∏

j′∈S\{j}(j − j′) ∈ Zq such that

F (i) =
∑

j∈S

λS
i,jF (j) mod q

A.2 Zero-Knowledge Proof of Equality of Discrete Logarithm.

Let G be a group of prime order q with generators g and ḡ. Let EDLogg,ḡ be the language of pairs
(u, ū) ∈ G

2 such that logg u = logḡ ū. We will use a zero-knowledge proof of membership for the
language EDLogg,ḡ. It is not a proof of knowledge since we only want to prove the correctness of
the values computed by the authentication servers. We use the zero-knowledge proof system due
to Chaum and Pedersen[8]. Although it happens to also be a proof of knowledge, we will not
use this property. We describe here the non-interactive version using the Fiat-Shamir heuristic
in the random oracle model.

Let (u, ū) ∈ EDLogg,ḡ be given, so there exists r ∈ Zq such that u = gr and ū = ḡr.

– The prover chooses t ∈ Zq at random, computes w = gt and w̄ = ḡt. He computes c =
H(p, q, g, ḡ, u, ū, w, w̄) where H is modeled as a random oracle. Finally, he computes z =
t + rc mod q and sends to the verifier, (c, z)

– The verifier checks whether the following equality holds

c = H(p, q, g, ḡ, u, ū, gz/uc, ḡz/ūc)

It is well-known that the interactive version of this proof is sound since a cheating prover
can be accepted only with probability at most 1/q. Assume that (u, ū) 6∈ EDLogg,ḡ, then u = gr

and ū = ḡr̄ where r 6= r̄. If a proof is correct, then there exists a unique z such that w = gz/uc

and w̄ = ḡz/ūc, then z − rc = t and z − r̄c = t̄. Therefore, we get t − t̄ = (r̄ − r)c mod q and
since r̄− r 6= 0 mod q, there is a unique value for t− t̄ and so with probability 1/q, the cheating
prover is detected.

Finally, the interactive proof system is zero-knowledge against an honest verifier

B Security proofs for GPAKE

B.1 Proof of Theorem 4 (Semantic security)

We are interested in the event S, which occurs if the adversary correctly guesses the bit b involved
in the Test-queries. We furthermore consider the gateway (unilateral) authentication: event A is
set to true if a client instance accepts, without any gateway partner.
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Game G0: This is the real protocol, in the random-oracle model:

Advake−ror
GPAKE (A) = 2 Pr[S0]− 1 and SuccG−auth

GPAKE (A) = Pr[A0]. (1)

Let us furthermore define the event Sw/tA = S ∧ ¬A, which means that the adversary wins the
Real-Or-Random game without breaking authentication.

Game G1: In this game, we simulate the hash oracles Hash1 and Hash2, as usual by maintaining
hash lists ΛHash1

and ΛHash
′

2
. In addition to these, we also simulate two private hash functions

Hash′1 and Hash′2, both mapping {0, 1}⋆ to {0, 1}ℓ, to be used in later games. We also simulate
all the instances, as the real players would do, for the Send-queries and for the Execute and
Test-queries.

Game G2: We cancel games in which some collisions appear on the transcripts (C, S, X⋆, Y )
and on the output of the hash functions Hash1, Hash2, and G. Let Ev denote this event. The
distance follows easily from the birthday paradox. Note that, in the case of transcripts, at least
one element is generated by an honest participant (at least one of them in each of the qactive

active attacks, and all of them in the qexe passive attacks).

Pr[Ev2] ≤
q2
active + q2

G

2q
+

q2
exe

2q2
+

q2
Hash1

+ q2
Hash2

2ℓ
. (2)

Game G3: In this game, we show that the success probability of the adversary is negligible
in passive attacks via Execute-queries. To do so, we modify the way in which we compute the
session key SK and the authenticator AuthG in passive sessions. More precisely, whenever the
adversary asks a Execute-query, we compute the session key SK as Hash′1(C‖G‖X

⋆‖Y ) and
the authenticator AuthG as Hash′2(C‖G‖X

⋆‖Y ), using the private oracles Hash′1 and Hash′2.
As a result, the values SK and AuthS computed during a passive session become completely
independent of the hash functions Hash1 and Hash2 and of the Diffie-Hellman key KC/G, which
are no longer needed in these sessions. Please note that the oracles Hash1 and Hash2 are still
being used in active sessions.

The games G3 and G2 are indistinguishable unless A queries the hash function Hash1 or
Hash2 on (C‖G‖X⋆‖Y ‖KC/G), for such a passive transcript: AskH-Passive. To upper-bound
the probability of this event, we consider an auxiliary game G3’, in which the simulation of
the players changes — but the distributions remain perfectly identical. Since we do not need
to compute KC/G for the simulation of Execute-queries, we can simulate X⋆ as Aa1ga2 · Upw,

Y as Bb1gb2 , and Y as Y s. If event AskH-Passive occurs, one can extract K = CDH(Aa1ga2 ,
(Bb1gb2)s) = CDH(Aa1ga2 , Bb1sgb2s) = CDH(Aa1ga2 , Bb1s) · CDH(Aa1ga2 , gb2s) = CDH(Aa1 ,
Bb1s) ·CDH(ga2 , Bb1s) ·CDH(Aa1 , gb2s) ·CDH(ga2 , gb2s) = CDH(A, B)a1b1s ·Ba2b1s ·Aa1b2s ·ga2b2s

from ΛHash1
or ΛHash2

:

Pr[AskH-Passive3] ≤ (qHash1 + qHash2)×Advcdh
G (t + (4qexe + 4)τe). (3)

Game G4: We now consider passive attacks via Send-queries, in which the adversary simply
forwards the messages it receives from the oracle instances. More precisely, we replace Hash1 by
Hash′1 and Hash2 by Hash′2 when computing SK and AuthS whenever the values (C‖G‖X⋆‖Y )
were generated by oracle instances. Note that we can safely do so due to the absence of collisions
in the transcript. Like in G3, the values SK and AuthS computed during such passive sessions
become completely independent of the hash functions Hash1 and Hash2 and of the Diffie-Hellman
key KC/G.
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As in the previous game, we can unbound the difference in the success probabilities of A in
games G4 and G3 by upper-bounding the probability that A queries the hash function Hash1

or Hash2 on (C‖G‖X⋆‖Y ‖KC/G), for such a passive transcript: AskH-Passive-Send. To achieve
this goal, we consider an auxiliary game G4’, in which the simulation of the players changes
slightly without affecting the view of the adversary. In this simulation, we choose at random
one of the Send(C, “start′′)-queries being asked to C and we reply with X⋆ = gx⋆

(hoping that
is one of the sessions that the adversary simply forwards the message). On the gateway side,
we also change the simulation whenever an instance of the latter receives X⋆ = gx⋆

as input.
In this case, we simply compute the value Y as V b1gb2 and the values SK and AuthG using
the private hash functions Hash′1 and Hash′2 on input (C‖G‖X⋆‖Y ), respectively. If the event
AskH-Passive-Send occurs and our guess for the active session is correct, then we can extract
K = CDH(gx⋆

/Upw, V b1gb2) = (V b1x⋆
gb2x⋆

)/(V b1x⋆
CDH(U, V )b1pw from ΛHash1

and ΛHash2
:

Pr[AskH-Passive-Send4] ≤ qactive × (qHash1 + qHash2)×Advcdh
G (t + 2τe). (4)

Game G5: In this game, we make one of the most significant modifications. We replace
the oracles Hash1 and Hash2 by the private oracles Hash′1 and Hash′2 whenever the input to
these queries contains an element that was generated by a client instance but not by a gateway
instance. More precisely, if a query (C‖G‖X⋆‖Y ‖pw‖KC/G) is made to Hash1 (respectively

Hash2) where only the value X⋆ has been simulated (i.e., Y was generated by the adversary),
then we reply to it using Hash′1(C‖G‖X

⋆‖Y ) (respectively Hash′2(C‖G‖X
⋆‖Y )).

Clearly, games G5 and G4 are indistinguishable as long asA does not query the hash function
Hash on an input (C‖G‖X⋆‖Y ‖KC/G), where KC/G = CDH(X⋆/Upw, Y ), for some execution

transcript (C, G, X⋆, Y ). We denote this bad event by AskH-ActivewC. Thus,

|Pr[A5]− Pr[A4] | ≤ Pr[AskH-ActivewC] |Pr[Sw/tA5]− Pr[Sw/tA4] | ≤ Pr[AskH-ActivewC] (5)

Please note that, at this point, client instances no longer need to know the value of x used
to compute X⋆ when computing the session key or when verifying an authenticator. Thus, we
can simplify the simulation of Send queries of the type (Ci, start ) so that the reply X⋆ to the
latter is simply computed as gx⋆

(without using the password).

Game G6: In this game, we modify the simulation of the oracles Hash1 and Hash2 one last
time, in cases where the element X⋆ in the query input (C‖G‖X⋆‖Y ‖KC/G) was generated by
the adversary, by replacing these oracles with the oracles Hash′1 and Hash′2. Since the session key
is now being computed with an oracle that is private to simulation, Pr[Sw/tA6] = 1

2 .
Note that, in this game, the exact simulation of the Send oracle is as follows. On a query

of type (Ci, start ), we reply with (C, X⋆ = gx⋆
) for a random x⋆ ∈ Zp, if Ci is in the

correct state. On a query of type (Gj , (C, X⋆)), we reply with (G, Y = gy, AuthG), where
AuthG = Hash′2(C, G, X⋆, Y ) and y ∈ Zp is chosen at random, and we set the session key
SKG to Hash′1(C, G, X⋆, Y ), if Gj is in the correct state. On a query of type (Ci, (G, Y ,AuthG)),
we first check whether whether X⋆ is correct and whether AuthG = Hash′2(C, G, X⋆, Y ), if Ci is
in the correct state. If both tests are correct, then we set the session key SKC to Hash′1(C, G, X⋆,
Y ). As the following lemma shows, the adversary cannot do much better than simply guessing
the password when distinguishing the current experiment from the previous one.

Lemma 8. |Pr[Succ0 ]− Pr[Succ0 ]| ≤ qfake−G ·Advspccdh
G,N,qHash1

+qHash2
(t,D) .

Proof. The proof of this lemma is based on a sequence of qfake−G + 1 hybrid experiments Hybj ,
where j is an index between 0 and qfake−G. Let i be a counter for number of queries of the form
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(Gk, (C, X⋆)). That is, we only increment i when the adversary asks a Send query to a gateway
instance in which the value X⋆ has not been simulated. We define Hybj as follows:

– If i ≤ j, then we processes the current Send query as in Game G6.
– If i > j, then we processes the current Send query as in Game G5.

It is clear from the above definition that experiments Hyb0 and Hybqfake−G
are equivalent to

games G5 and G6, respectively. Now let Pj denote the probability of any event Ev in Hybj :

∣

∣

∣
Pr[Ev6]− Pr[Ev5]

∣

∣

∣
≤

qfake−G
∑

j=1

|Pj − Pj−1|. (6)

Thus, the lemma will easily follow by showing that the difference in probabilities |Pj − Pj−1|

between two consecutive hybrid games is at most Advspccdh
G,N,qHash1

+qHash2
(t′,D).

Let (Gk, (C, X⋆)) be the values involved in the crucial j-th Send query to a gateway instance
in which the value X⋆ has not been simulated. In order to prove the bound for |Pj−Pj−1|, we first
observe that games Hybj−1 and Hybj are indistinguishable as long as A does not query the hash

functions Hash1 or Hash2 on an input (C‖G‖X⋆‖Y ‖KC/G), where KC/G = CDH(X⋆/Upw, Y )

and X⋆ and Y are the values involved in the crucial j-th Send query. LetAskH-ActivewS denote
this bad events. Thus, |Pj − Pj−1| ≤ Pr[AskH-ActivewS].

We now proceed to show that Pr[AskH-ActivewS] ≤ Advspccdh
G,N,qHash1

+qHash2
(t,D). To do so,

consider the following algorithm Dj for the SPCCDH problem in G.

Algorithm Dj. Let (D) be the input given to Dj . Dj starts running A, simulating oracle G
with the help of its input D. Initially, whenever A asks a Send query, Dj answers to it exactly
as one would in game G6. Note that Dj can easily do so because game G6 does not require
the knowledge of the password to simulate it. Dj will continue to simulate Send queries as in
game G6 until A asks the j-th Send(Gk, (C, X⋆))-query in which the value X⋆ has not been
simulated. At this point, Dj outputs X⋆ and receives the password Π and a value Y as the
input of its second stage. It then sets Y = Y , computes KC/G and AuthG using the private

oracles Hash′1 and Hash′2, and returns (G, Y = gy, AuthG) to A. From all remaining queries, Dj

answers to them as as one would in game G5. Note that it can do so because it knows the value
of the password Π. At the end of the simulation, Dj generates its output using the value KC/G

of each query to the Hash1 and Hash2 oracles such that X⋆ and Y match the values involved in
the crucial j-th Send query.

In order to analyze the success probability of Dj , we first note that the simulation environ-
ment provided by Dj to A is perfect and similar to those of games Hybj−1 and Hybj up until
the moment in which event AskH-ActivewS happens. Moreover, if event AskH-ActivewS happens,
then the set of queries asked to Hash1 and Hash2 contains CDH(X⋆/Π, Y ), the solution to

the SPCCDH problem. Thus, Pr[AskH-ActivewS] ≤ Advspccdh
G,N,qHash1

+qHash2
(t,D) and the lemma

follows.

Game G7: In this game, we finally evaluate the probability of event AskH-ActivewC by
considering active attacks against client instances, in which the adversary tries to impersonates
the gateway. To do so, we change the simulation of client instances so that the latter rejects all
the authenticators sent by the adversary: Pr[A7] = 0.

In order to evaluate the distance between the games G7 and G6, we consider the probability
with which the adversary succeeds in faking the gateway by sending a valid authenticator. To
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do so, we first notice that since the password is no longer used in the simulation of the oracles,
we can postpone choosing its value until the very end of the simulation. Then, since we assume
that the size of the dictionary is smaller than 2ℓ, then for each password pw in the dictionary,
there is exactly one valid authenticator (Since collisions on the output of the hash functions
have been removed). As a result, the probability that the adversary succeeds in sending a valid
authenticator in each session is at most 1/N . It follows that

|Pr[Sw/tA7]− Pr[Sw/tA6] | ≤ qfake−C/N. (7)

Since all sessions in which the adversary is performing an active attack against a client
instance results in non acceptance, Pr[AskH-ActivewC7] = 0. Thus, the proof of Theorem 4
follows by combining the results above.

B.2 Proof of Theorem 6 (key privacy)

The proof of key privacy of GPAKE is similar to the one given by Abdalla et al. [1] for their
generic 3-party password-based authenticated key exchange protocol. The main difference is
that, in our proof, we do not consider Send queries since the server (which is distributed in
the real protocol) is assumed to be honest-but-curious. As in their case, the key privacy of our
protocol follows from the intractability of breaking the Decisional Diffie-Hellman problem in the
underlying group G.

Let Akp be an adversary against the key privacy of GPAKE with time-complexity at most
t, and asking at most qexe queries to its Execute oracle and qtest queries to its TestPair oracle.
Using Akp, we can build an adversary Addh for the DDH problem in G as follows.

Let (U, V, W ) be the input given to Addh. Addh first chooses the passwords for all users in
the system according to the distribution of Dict. It also chooses a bit b at random that is used
to answer queries to the TestPair oracle. It then starts running Akp giving all the password of
all users to it. Addh will use the classical random self-reducibility of the Diffie-Hellman problem
to introduce its input triple in the answers to Execute and TestPair.

To simulate the Execute(Ci, Gj) oracle, Addh first chooses random values a0, a1, b0, b1, and
s in Zq. Then, it computes X = Ua0ga1 and X⋆ = X × G(pw), by using the previously-chosen
password and simulating the random oracle G in the usual way, and the values Y = V b0gb1 ,
X = Xs, and Y = Y s. Next, Addh sets the Diffie-Hellman key K to W a1b1s ·Ua1b2s ·V a2b1s ·ga2b2s

and computes AuthG = Hash2(C‖G‖X
⋆‖Y ‖K) and the session key SK = Hash1(C‖G‖X

⋆‖Y ‖
K). Finally, Addh gives (X⋆, Y, Y ,X, AuthG) to Akp.

To simulate the TestPair(Ci, Gj), Addh first checks whether this same query has been asked
before and gives the same response if that is the case. Otherwise, Addh checks whether Ci and
Gj are indeed partners, and then gives to Akp either the session key SK if b = 0 or a random
value in G if b = 1.

To analyze the success probability of Addh, first consider the case in which the triple (U, V, W )
is a true Diffie-Hellman triple. Then, in this case, one can see that simulation of the Akp oracles

is perfect. Hence, the probability that Addh outputs 1 is exactly 1
2 + 1

2Advake−kp

GPAKE,Dict
(Akp). On

the other hand, when (U, V, W ) is a random triple, the keys used to answer TestPair queries
are all random and independent as a result of the random self-reducibility property of the
Diffie-Hellman problem. Hence, no information on b is leaked through TestPair queries and the
probability that Addh outputs 1 is exactly 1

2 in this case. The proof of Theorem 6 follows from
the fact that Addh has time-complexity at most t + 8(qexe)τe, due to the additional time for
the computations of the random self-reducibility.
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C Proof of Lemma 2

In this section, we show that the Set Password-based Computational Diffie-Hellman SPCCDH
problem is equivalent to the (basic) computational Diffie-Hellman problem CDH: For proving
this relation, one simply applies the splitting lemma [14]:

Lemma 9 (Splitting Lemma). Let S ⊂ A× B such that Pr[(a, b) ∈ S] ≥ α. For any β < α,
define

T =

{

(a, b) ∈ A×B Pr
b′∈B

[(a, b′) ∈ S] ≥ α− β

}

Then (i) Pr[T ] ≥ β (ii) ∀(a, b) ∈ T, Prb′∈B[(a, b′) ∈ S] ≥ α− β.

Let A be an adversary against the SPCCDH problem, with success probability α = 1/N + ε.
Then, we can use the splitting lemma, with β = ε/2, on

A = {(ω, X,D)} and B = {1, . . . , N} ≈ D.

Our adversary B receives as input a random CDH instance (U, X). It chooses a random tape ω
for A, as well as N random distinct exponents ui ∈ Zp. It defines Ui = Uui , which specifies the
dictionary D: with probability greater than ε/2, the success probability is greater than 1/N+ε/2,
over the probability space B = {1, . . . , N}. It is thus a multiple of 1/N , not smaller than 1/N+ν,
where ν is the maximum in {1/N, ε/2}. One first simply runs A with a random k, and with prob-
ability greater than 1/N+ν, one gets a first set S1 with K = CDH(X/Uk, Y ) = CDH(X/Uuk , Y ).
One runs A again, with another random k′ 6= k, and with probability greater than ν, one
gets a second set S2 with K ′ = CDH(X/Uk′ , Y ) = CDH(X/Uuk′ , Y ). Then, CDH(X, U) =
(K/K ′)1/(uk−uk′ ). By choosing two elements at random in S1 and S2, one gets CDH(X, U) with
probability 1/s2.


